If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-10w-14=0
a = 3; b = -10; c = -14;
Δ = b2-4ac
Δ = -102-4·3·(-14)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{67}}{2*3}=\frac{10-2\sqrt{67}}{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{67}}{2*3}=\frac{10+2\sqrt{67}}{6} $
| -8v+6(v+3)=-2 | | -3(4+x)=-15 | | 6(2x-10)=84 | | 2x5-31=-9x5+24 | | 95x^2+x=5 | | 4(6-3x)=-4(2+5x) | | -16=2x+2 | | 6(-6x+8)=-132 | | 3(x-4)-5x=-2x+12 | | 9.45x+7.65(0)=160.65 | | 4+3q=10 | | X+5/2-2(x+10)=5 | | 22=11t | | 6=3x+24 | | 5(-1-2x)=-5 | | 295=-x+254 | | x-4x+16=2x-x | | 4(u+3)-3u=2(u+3) | | 3(x+3)-(x+14)=0.6x-2.5-x | | 18=-2(3-3z) | | |9-2x|=10+3x | | 3(y+1)+2y=5(y-1 | | -4(1x-3)=-20 | | ³²√8x=65536 | | 28.19=5g+3.79 | | (x^2−22)=(6x+5) | | (3y-2)(y+4)-24=0 | | -4(1x-3=-20) | | (4/3)/7=n/3 | | 35x+40=1850 | | F(x)=9/x-2 | | 2(3x+4=-4(4x+4)+3x |